Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.583
Filtrar
1.
Cancer Med ; 13(4): e6940, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457216

RESUMO

BACKGROUND: Tumor metastasis is responsible for the high mortality rate of patients with oral squamous cell carcinoma (OSCC). Although many hypotheses have been proposed to elucidate the mechanism of tumor metastasis, the origin of the metastatic tumor cells remains unclear. In this study, we explored the role of cell fusion in the formation of OSCC metastatic tumor cells. METHODS: Murine OSCC tumor cells and macrophages were fused in vitro, and the cell proliferation, migration, and phagocytosis abilities of hybrid cells and parental cells were compared. Subsequently, we compared the transcriptome differences between hybrid and parental cells. RESULTS: Murine OSCC tumor cells and macrophages were successfully fused in vitro. The cytological and molecular experimental results revealed that OSCC tumor cells obtained a migration-related phenotype after fusion with macrophages, and the migration ability of hybrid cells was related to the activation of the "chemokine signal pathway". CONCLUSION: After fusion with macrophages, the chemokine signaling pathway in OSCC tumor cells was activated, leading to metastasis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias Bucais/patologia , Fusão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Transdução de Sinais/genética , Macrófagos/metabolismo , Quimiocinas/metabolismo , Neoplasias de Cabeça e Pescoço/patologia
2.
Viruses ; 16(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38400027

RESUMO

Herpes simplex virus 1 (HSV-1) causes significant morbidity and death in humans worldwide. Herpes simplex virus 1 has a complex fusion mechanism that is incompletely understood. The HSV-1 strain ANG has notable fusion and entry activities that distinguish it from wild type. HSV-1 ANG virions fused with the Vero cell surface at 4 °C and also entered cells more efficiently at 15 °C, relative to wild type HSV-1 strain KOS virions, consistent with a hyperfusogenic phenotype. Understanding the molecular basis for the unique entry and fusion activities of HSV-1 strain ANG will help decipher the HSV fusion reaction and entry process. Sequencing of HSV-1 ANG genes revealed multiple changes in gB, gC, gD, gH, and gL proteins relative to wild type HSV-1 strains. The ANG UL45 gene sequence, which codes for a non-essential envelope protein, was identical to wild type KOS. HSV-1 ANG gB, gD, and gH/gL were necessary and sufficient to mediate cell-cell fusion in a virus-free reporter assay. ANG gB, when expressed with wild type KOS gD and gH/gL, increased membrane fusion, suggesting that ANG gB has hyperfusogenic cell-cell fusion activity. Replacing the KOS gD, gH, or gL with the corresponding ANG alleles did not enhance cell-cell fusion. The novel mutations in the ANG fusion and entry glycoproteins provide a platform for dissecting the cascade of interactions that culminate in HSV fusion and entry.


Assuntos
Herpesvirus Humano 1 , Humanos , Animais , Chlorocebus aethiops , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Fusão Celular , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células Vero , Internalização do Vírus , Fusão de Membrana
3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339201

RESUMO

Previous studies have shown that nuclear binding protein 2 (NUCB2) is expressed in the human placenta and increases with an increase in the syncytialization of trophoblast cells. This study aimed to investigate the role of NUCB2 in the differentiation and fusion of trophectoderm cells. In this study, the expression levels of NUCB2 and E-cadherin in the placentas of rats at different gestation stages were investigated. The results showed that there was an opposite trend between the expression of placental NUCB2 and E-cadherin in rat placentas in different trimesters. When primary human trophoblast (PHT) and BeWo cells were treated with high concentrations of Nesfatin-1, the trophoblast cell syncytialization was significantly inhibited. The effects of NUCB2 knockdown in BeWo cells and Forskolin-induced syncytialization were investigated. These cells showed a significantly decreased cell fusion rate. The mechanism underlying NUCB2-regulated trophoblast cell syncytialization was explored using RNA-Seq and the results indicated that the epidermal growth factor receptor (EGFR)-phospholipase C gamma 1 (PLCG1)-calmodulin-dependent protein kinase IV (CAMK4) pathway might be involved. The results suggested that the placental expression of NUCB2 plays an important role in the fusion of trophoblasts during differentiation via the EGFR-PLCG1-CAMK4 pathway.


Assuntos
Nucleobindinas , Placenta , Placentação , Trofoblastos , Animais , Feminino , Gravidez , Ratos , Caderinas/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Fusão Celular , Receptores ErbB/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipase C gama/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Nucleobindinas/metabolismo
4.
Math Biosci ; 369: 109144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224908

RESUMO

SARS-CoV-2 has the ability to form large multi-nucleated cells known as syncytia. Little is known about how syncytia affect the dynamics of the infection or severity of the disease. In this manuscript, we extend a mathematical model of cell-cell fusion assays to estimate both the syncytia formation rate and the average duration of the fusion phase for five strains of SARS-CoV-2. We find that the original Wuhan strain has the slowest rate of syncytia formation (6.4×10-4/h), but takes only 4.0 h to complete the fusion process, while the Alpha strain has the fastest rate of syncytia formation (0.36 /h), but takes 7.6 h to complete the fusion process. The Beta strain also has a fairly fast syncytia formation rate (9.7×10-2/h), and takes the longest to complete fusion (8.4 h). The D614G strain has a fairly slow syncytia formation rate (2.8×10-3/h), but completes fusion in 4.0 h. Finally, the Delta strain is in the middle with a syncytia formation rate of 3.2×10-2/h and a fusing time of 6.1 h. We note that for these SARS-CoV-2 strains, there appears to be a tradeoff between the ease of forming syncytia and the speed at which they complete the fusion process.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Fusão Celular
5.
mBio ; 15(2): e0313323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38214507

RESUMO

Prokaryotic evolution is driven by random mutations and horizontal gene transfer (HGT). HGT occurs via transformation, transduction, or conjugation. We have previously shown that in syntrophic cocultures of Clostridium acetobutylicum and Clostridium ljungdahlii, heterologous cell fusion leads to a large-scale exchange of proteins and RNA between the two organisms. Here, we present evidence that heterologous cell fusion facilitates the exchange of DNA between the two organisms. Using selective subculturing, we isolated C. acetobutylicum cells which acquired and integrated into their genome portions of plasmid DNA from a plasmid-carrying C. ljungdahlii strain. Limiting-dilution plating and DNA methylation data based on PacBio Single-Molecule Real Time (SMRT) sequencing support the existence of hybrid C. acetobutylicum/C. ljungdahlii cells. These findings expand our understanding of multi-species microbiomes, their survival strategies, and evolution.IMPORTANCEInvestigations of natural multispecies microbiomes and synthetic microbial cocultures are attracting renewed interest for their potential application in biotechnology, ecology, and medical fields. Previously, we have shown the syntrophic coculture of C. acetobutylicum and C. ljungdahlii undergoes heterologous cell-to-cell fusion, which facilitates the exchange of cytoplasmic protein and RNA between the two organisms. We now show that heterologous cell fusion between the two Clostridium organisms can facilitate the exchange of DNA. By applying selective pressures to this coculture system, we isolated clones of wild-type C. acetobutylicum which acquired the erythromycin resistance (erm) gene from the C. ljungdahlii strain carrying a plasmid with the erm gene. Single-molecule real-time sequencing revealed that the erm gene was integrated into the genome in a mosaic fashion. Our data also support the persistence of hybrid C. acetobutylicum/C. ljungdahlii cells displaying hybrid DNA-methylation patterns.


Assuntos
Clostridium acetobutylicum , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Técnicas de Cocultura , Fusão Celular , Clostridium/genética , DNA/metabolismo , RNA/metabolismo
6.
Elife ; 132024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265078

RESUMO

The fusion of mammalian gametes requires the interaction between IZUMO1 on the sperm and JUNO on the oocyte. We have recently shown that ectopic expression of mouse IZUMO1 induces cell-cell fusion and that sperm can fuse to fibroblasts expressing JUNO. Here, we found that the incubation of mouse sperm with hamster fibroblasts or human epithelial cells in culture induces the fusion between these somatic cells and the formation of syncytia, a pattern previously observed with some animal viruses. This sperm-induced cell-cell fusion requires a species-matching JUNO on both fusing cells, can be blocked by an antibody against IZUMO1, and does not rely on the synthesis of new proteins. The fusion is dependent on the sperm's fusogenic capacity, making this a reliable, fast, and simple method for predicting sperm function during the diagnosis of male infertility.


Assuntos
Fertilização , Receptores de Superfície Celular , Cricetinae , Masculino , Humanos , Animais , Camundongos , Receptores de Superfície Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo , Fusão Celular , Sêmen/metabolismo , Espermatozoides/metabolismo , Imunoglobulinas/metabolismo , Mamíferos/metabolismo , Anticorpos/metabolismo
7.
Biochem Biophys Res Commun ; 690: 149231, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000293

RESUMO

Cell fusion plays a key role in the development and formation of tissues and organs in several organisms. Skeletal myogenesis is assessed in vitro by cell shape and gene and protein expression using immunofluorescence and immunoblotting assays. However, these conventional methods are complex and do not allow for easy time-course observation in living cells. Therefore, this study aimed to develop a Cre recombination-based fluorescent reporter system to monitor cell-cell fusion. We combined green and red fluorescent proteins with a Cre-loxP system to detect syncytium formation using a fluorescent binary switch. This allowed us to visualize mononucleated cells with green fluorescence before fusion and multinucleated syncytia with red fluorescence by conditional expression after cell fusion. The formation of multinuclear myotubes during myogenic differentiation was detected by the change in fluorescence from green to red after Cre-mediated recombination. The distribution of the fluorescence signal correlated with the expression of myogenic differentiation markers. Moreover, red reporter fluorescence intensity was correlated with the number of nuclei contained in the red fluorescent-positive myotubes. We also successfully demonstrated that our fusion monitoring system is applicable to the formation of skeletal muscle myotube and placental syncytiotrophoblast. These results suggest that the color-switching fluorescent reporter system, using Cre-mediated recombination, could be a robust tool used to facilitate the study of cell-to-cell fusion.


Assuntos
Placenta , Gravidez , Feminino , Humanos , Fusão Celular , Placenta/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Diferenciação Celular/genética , Recombinação Genética , Integrases/genética , Integrases/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
8.
Cancer Gene Ther ; 31(1): 158-173, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990063

RESUMO

MSCs (mesenchymal stem cells), responsible for tissue repair, rarely undergo cell fusion with somatic cells. Here, we show that ~5% of bladder cancer cells (UMUC-3) fuses with bone marrow-derived MSC (BM-MSC) in co-culture and maintains high tumorigenicity. In eleven fusion cell clones that have been established, Mb-scale deletions carried by the bladder cancer cells are mostly absent in the fusion cells, but copy number gains contributed by the cancer cells have stayed. Fusion cells exhibit increased populations of mitotic cells with 3-polar spindles, indicative of genomic instability. They grow faster in vitro and exhibit higher colony formation in anchorage-independent growth assay in soft agar than the parent UMUC-3 does. Fusion cells develop tumors, after 4 weeks of time lag, as efficiently as the parent UMUC-3 does in xenograft experiments. 264 genes are identified whose expression is specifically altered in the fusion cells. Many of them are interferon-stimulated genes (ISG), but are activated in a manner independent of interferon. Among them, we show that PD-L1 is induced in fusion cells, and its knockout decreases tumorigenesis in a xenograft model. PD-L1 is induced in a manner independent of STAT1 known to regulate PD-L1 expression, but is regulated by histone modification, and is likely to inhibit phagocytosis by PD1-expressing macrophages, thus protecting cancer cells from immunological attacks. The fusion cells overexpress multiple cytokines including CCL2 that cause tumor progression by converting infiltrating macrophages to tumor-associated-macrophage (TAM). The results present mechanisms of how cell fusion promotes tumorigenesis, revealing a novel link between cell fusion and PD-L1, and underscore the efficacy of cancer immunotherapy.


Assuntos
Antígeno B7-H1 , Neoplasias da Bexiga Urinária , Humanos , Fusão Celular , Monitorização Imunológica , Interferons , Carcinogênese , Linhagem Celular Tumoral
9.
Cancer Sci ; 115(2): 600-610, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037288

RESUMO

Oncolytic viruses have two anticancer functions: direct oncolysis and elicitation of antitumor immunity. We previously developed a novel fusogenic oncolytic vaccinia virus (FUVAC) from a non-fusogenic vaccinia virus (VV) and, by remodeling the tumor immune microenvironment, we demonstrated that FUVAC induced stronger oncolysis and antitumor immune responses compared with non-fusogenic VV. These functions depend strongly on cell-cell fusion induction. However, FUVAC tends to have decreased fusion activity in cells with low virus replication efficacy. Therefore, another combination strategy was required to increase cell-cell fusion in these cells. Histone deacetylase (HDAC) inhibitors suppress the host virus defense response and promote viral replication. Therefore, in this study, we selected an HDAC inhibitor, trichostatin A (TSA), as the combination agent for FUVAC to enhance its fusion-based antitumor potential. TSA was added prior to FUVAC treatment of murine tumor B16-F10 and CT26 cells. TSA increased the replication of both FUVAC and parental non-fusogenic VV. Moreover, TSA enhanced cell-cell fusion and FUVAC cytotoxicity in these tumor cells in a dose-dependent manner. Transcriptome analysis revealed that TSA-treated tumors showed altered expression of cellular component-related genes, which may affect fusion tolerance. In a bilateral tumor-bearing mouse model, combination treatment of TSA and FUVAC significantly prolonged mouse survival compared with either treatment alone or in combination with non-fusogenic VV. Our findings demonstrate that TSA is a potent enhancer of cell-cell fusion efficacy of FUVAC.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Vírus Vaccinia/genética , Vírus Vaccinia/metabolismo , Fusão Celular , Neoplasias/genética , Linhagem Celular Tumoral , Microambiente Tumoral
10.
Results Probl Cell Differ ; 71: 407-432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37996688

RESUMO

Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.


Assuntos
Neoplasias , Humanos , Fusão Celular , Neoplasias/patologia
11.
Proc Natl Acad Sci U S A ; 120(50): e2311913120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060559

RESUMO

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infects host cells by engaging its spike (S) protein with human ACE2 receptor. Recent studies suggest the involvement of integrins in SARS-CoV-2 infection through interaction with the S protein, but the underlying mechanism is not well understood. This study investigated the role of integrin α5ß1, which recognizes the Arg-Gly-Asp (RGD) motif in its physiological ligands, in S-mediated virus entry and cell-cell fusion. Our results showed that α5ß1 does not directly contribute to S-mediated cell entry, but it enhances S-mediated cell-cell fusion in collaboration with ACE2. This effect cannot be inhibited by the putative α5ß1 inhibitor ATN-161 or the high-affinity RGD-mimetic inhibitor MK-0429 but requires the participation of α5 cytoplasmic tail (CT). We detected a direct interaction between α5ß1 and the S protein, but this interaction does not rely on the RGD-containing receptor binding domain of the S1 subunit of the S protein. Instead, it involves the S2 subunit of the S protein and α5ß1 homo-oligomerization. Furthermore, we found that the S protein induces inflammatory responses in human endothelial cells, characterized by NF-κB activation, gasdermin D cleavage, and increased secretion of proinflammatory cytokines IL-6 and IL-1ß. These effects can be attenuated by the loss of α5 expression or inhibition of the α5 CT binding protein phosphodiesterase-4D (PDE4D), suggesting the involvement of α5 CT and PDE4D pathway. These findings provide molecular insights into the pathogenesis of SARS-CoV-2 mediated by a nonclassical RGD-independent ligand-binding and signaling function of integrin α5ß1 and suggest potential targets for antiviral treatment.


Assuntos
COVID-19 , Integrina alfa5beta1 , Humanos , Integrina alfa5beta1/metabolismo , SARS-CoV-2/metabolismo , Células Endoteliais/metabolismo , Fusão Celular , Enzima de Conversão de Angiotensina 2 , Oligopeptídeos/farmacologia , Integrinas/química , Inflamação , Glicoproteína da Espícula de Coronavírus/genética
12.
Cells ; 12(23)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067102

RESUMO

Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here we show that RhoA in SCs is indispensable to have correct muscle regeneration and hypertrophy. In particular, the absence of RhoA in SCs prevents a correct SC fusion both to other RhoA-deleted SCs (regeneration context) and to growing control myofibers (hypertrophy context). We demonstrated that RhoA is dispensable for SCs proliferation and differentiation; however, RhoA-deleted SCs have an inefficient movement even if their cytoskeleton assembly is not altered. Proliferative myoblast and differentiated myotubes without RhoA display a decreased expression of Chordin, suggesting a crosstalk between these genes for myoblast fusion regulation. These findings demonstrate the importance of RhoA in SC fusion regulation and its requirement to achieve an efficient skeletal muscle homeostasis restoration.


Assuntos
Fusão Celular , Fibras Musculares Esqueléticas , Células Satélites de Músculo Esquelético , Proteína rhoA de Ligação ao GTP , Humanos , Comunicação Celular , Hipertrofia/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/fisiologia
13.
Viruses ; 15(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140682

RESUMO

Syncytin-1 and -2 are glycoproteins encoded by human endogenous retrovirus (hERV) that, through their fusogenic properties, are needed for the formation of the placental syncytiotrophoblast. Previous studies suggested that these proteins, in addition to the EnvP(b) envelope protein, are also involved in other cell fusion events. Since galectin-1 is a ß-galactoside-binding protein associated with cytotrophoblast fusion during placental development, we previously tested its effect on Syncytin-mediated cell fusion and showed that this protein differently modulates the fusogenic potential of Syncytin-1 and -2. Herein, we were interested in comparing the impact of galectin-1 on hERV envelope proteins in different cellular contexts. Using a syncytium assay, we first demonstrated that galectin-1 increased the fusion of Syncytin-2- and EnvP(b)-expressing cells. We then tested the infectivity of Syncytin-1 and -2 vs. VSV-G-pseudotyped viruses toward Cos-7 and various human cell lines. In the presence of galectin-1, infection of Syncytin-2-pseudotyped viruses augmented for all cell lines. In contrast, the impact of galectin-1 on the infectivity of Syncytin-1-pseudotyped viruses varied, being cell- and dose-dependent. In this study, we report the functional associations between three hERV envelope proteins and galectin-1, which should provide information on the fusogenic activity of these proteins in the placenta and other biological and pathological processes.


Assuntos
Retrovirus Endógenos , Placenta , Feminino , Humanos , Gravidez , Linhagem Celular , Retrovirus Endógenos/metabolismo , Galectina 1/metabolismo , Produtos do Gene env/genética , Placenta/metabolismo , Trofoblastos/metabolismo , Fusão Celular
14.
Biomolecules ; 13(11)2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-38002309

RESUMO

Cell fusion in the placenta is tightly regulated. Suppressyn is a human placental endogenous retroviral protein that inhibits the profusogenic activities of another well-described endogenous retroviral protein, syncytin-1. In this study, we aimed to elucidate the mechanisms underlying suppressyn's placenta-specific expression. We identified the promoter region and a novel enhancer region for the gene encoding suppressyn, ERVH48-1, and examined their regulation via DNA methylation and their responses to changes in the oxygen concentration. Like other endogenous retroviral genes, the ERVH48-1 promoter sequence is found within a characteristic retroviral 5' LTR sequence. The novel enhancer sequence we describe here is downstream of this LTR sequence (designated EIEs: ERV internal enhancer sequence) and governs placental expression. The placenta-specific expression of ERVH48-1 is tightly controlled by DNA methylation and further regulated by oxygen concentration-dependent, hypoxia-induced transcription factors (HIF1α and HIF2α). Our findings highlight the involvement of (1) tissue specificity through DNA methylation, (2) expression specificity through placenta-specific enhancer regions, and (3) the regulation of suppressyn expression in differing oxygen conditions by HIF1α and HIF2α. We suggest that these regulatory mechanisms are central to normal and abnormal placental development, including the development of disorders of pregnancy involving altered oxygenation, such as preeclampsia, pregnancy-induced hypertension, and fetal growth restriction.


Assuntos
Retrovirus Endógenos , Trofoblastos , Feminino , Humanos , Gravidez , Fusão Celular , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Oxigênio/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
15.
Cell Reprogram ; 25(5): 251-259, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847898

RESUMO

In mammals, differentiated cells generally do not de-differentiate nor undergo cell fate alterations. However, they can be experimentally guided toward a different lineage. Cell fusion involving two different cell types has long been used to study this process, as this method induces cell fate alterations within hours to days in a subpopulation of fused cells, as evidenced by changes in gene-expression profiles. Despite the robustness of this system, its use has been restricted by low fusion rates and difficulty in eliminating unfused populations, thereby compromising resolution. In this study, we address these limitations by isolating fused cells using antibody-conjugated beads. This approach enables the microscopic tracking of fused cells starting as early as 5 hours after fusion. By taking advantage of species-specific FISH probes, we show that a small population of fused cells resulting from the fusion of mouse ES and human B cells, expresses OCT4 from human nuclei at levels comparable to human induced pluripotent stem cells (iPSCs) as early as 25 hours after fusion. We also show that this response can vary depending on the fusion partner. Our study broadens the usage of the cell fusion system for comprehending the mechanisms underlying cell fate alterations. These findings hold promise for diverse fields, including regenerative medicine and cancer.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Fusão Celular/métodos , Diferenciação Celular/fisiologia , Núcleo Celular/metabolismo , Mamíferos
16.
Int Rev Cell Mol Biol ; 381: 99-111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37739485

RESUMO

Circulating tumor cells (CTCs) were first described 150 years ago. The so-called "classical" CTC populations (EpCAM+/CK+/CD45-) have been fully characterized and proposed as the most representative CTC subset, with clinical relevance. Nonetheless, other "atypical" or "unconventional" CTCs have also been identified, and their critical role in metastasis formation was demonstrated. In this chapter we illustrate the studies that led to the discovery of unconventional CTCs, defined as CTCs that display both epithelial and mesenchymal markers, or both cancer and immune markers, also in the form of hybrid cancer-immune cells. We also present biological explanations for the origin of these unconventional CTCs: epithelial to mesenchymal transition, cell-cell fusion and trogocytosis. We believe that a deeper knowledge on the biology of CTCs is needed to fully elucidate their role in cancer progression and their use as cancer biomarkers.


Assuntos
Células Neoplásicas Circulantes , Humanos , Fusão Celular , Transição Epitelial-Mesenquimal , Trogocitose , Incerteza
17.
Cell Host Microbe ; 31(9): 1417-1419, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37708846

RESUMO

Interferons (IFNs) and interferon-stimulated genes (ISGs) are the major players in the host innate immunity against viral infection. In a recent Nature paper, Xu et al. identified phospholipid scramblase 1 (PLSCR1) as a novel ISG that restricts severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by blocking virus-cell fusion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fusão Celular , Imunidade Inata , Interferons , Proteínas de Transferência de Fosfolipídeos
18.
J Cell Sci ; 136(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37732459

RESUMO

A characteristic of normal aging and age-related diseases is the remodeling of the cellular organization of a tissue through polyploid cell growth. Polyploidy arises from an increase in nuclear ploidy or the number of nuclei per cell. However, it is not known whether age-induced polyploidy is an adaption to stressors or a precursor to degeneration. Here, we find that abdominal epithelium of the adult fruit fly becomes polyploid with age through generation of multinucleated cells by cell fusion. Inhibition of fusion does not improve the lifespan of the fly, but does enhance its biomechanical fitness, a measure of the healthspan of the animal. Remarkably, Drosophila can maintain their epithelial tension and abdominal movements with age when cell fusion is inhibited. Epithelial cell fusion also appears to be dependent on a mechanical cue, as knockdown of Rho kinase, E-cadherin or α-catenin is sufficient to induce multinucleation in young animals. Interestingly, mutations in α-catenin in mice result in retina pigment epithelial multinucleation associated with macular disease. Therefore, we have discovered that polyploid cells arise by cell fusion and contribute to the decline in the biomechanical fitness of the animal with age.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Camundongos , Drosophila/genética , alfa Catenina , Fusão Celular , Proteínas de Drosophila/genética , Poliploidia
19.
Methods Mol Biol ; 2682: 59-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610573

RESUMO

Henipaviruses include the deadly zoonotic Nipah (NiV) and Hendra (HeV) paramyxoviruses, which have caused recurring outbreaks in human populations. A hallmark of henipavirus infection is the induction of cell-cell fusion (syncytia), caused by the expression of the attachment (G) and fusion (F) glycoproteins on the surface of infected cells. The interactions of G and F with each other and with receptors on cellular plasma membranes drive both viral entry and syncytia formation and are thus of great interest. While F shares structural and functional homologies with class I fusion proteins of other viruses such as influenza and human immunodeficiency viruses, the intricate interactions between the G and F glycoproteins allow for unique approaches to studying the class I membrane fusion process. This allows us to study cell-cell fusion and viral entry kinetics for BSL-4 pathogens such as NiV and HeV under BSL-2 conditions using recombinant DNA techniques. Here, we present approaches to studying henipavirus-induced membrane fusion for currently identified and emerging henipaviruses, including more traditional syncytia counting-based cell-cell fusion assay and a new heterologous fluorescent dye exchange cell-cell fusion assay.


Assuntos
Henipavirus , Internalização do Vírus , Fusão Celular , Humanos
20.
Adv Sci (Weinh) ; 10(29): e2303309, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37590231

RESUMO

Cell fusion plays a critical role in cancer progression and metastasis. However, effective modulation of the cell fusion behavior and timely evaluation on the cell fusion to provide accurate information for personalized therapy are facing challenges. Here, it demonstrates that the cancer cell fusion behavior can be efficiently modulated and precisely detected through employing a multifunctional delivery vector to realize cancer targeting delivery of a genome editing plasmid and a molecular beacon-based AND logic gate. The multifunctional delivery vector decorated by AS1411 conjugated hyaluronic acid and NLS-GE11 peptide conjugated hyaluronic acid can specifically target circulating malignant cells (CMCs) of cancer patients to deliver the genome editing plasmid for epidermal growth factor receptor (EGFR) knockout. The cell fusion between CMCs and endothelial cells can be detected by the AND logic gate delivered by the multifunctional vector. After EGFR knockout, the edited CMCs exhibit dramatically inhibited cell fusion capability, while unedited CMCs can easily fuse with human umbilical vein endothelial cells (HUVEC) to form hybrid cells. This study provides a new therapeutic strategy for preventing cancer progression and a reliable tool for evaluating cancer cell fusion for precise personalized therapy.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Fusão Celular , Células Endoteliais/metabolismo , Ácido Hialurônico , Edição de Genes , Neoplasias/terapia , Receptores ErbB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...